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Let H be a finite-dimensional Haar subspace of C[a, b] and letfE C[a, bJ
be arbitrary. Then the well-known result of Jackson [1] asserts thatfhas a
unique closest point in H in the L[ sense (using Lebesgue measure, say). In
moving from linear to nonlinear L [ approximation it is natural to consider
the uniqueness question for nonlinear families whose local approximating
tangent spaces are finite-dimensional Haar spaces. In studying the
uniqueness question the critical points of the error functional are of central
importance since the best approximations are among them.

In this paper we shall present examples which show that even with a single
nonlinear parameter it is possible (at least for a certain class of such families
including the exponential and rational families) to produce a continuous
function such that the corresponding error functional has a continuum of
critical points. A simple modification of the construction yields a continuous
function with (at least) a countably infinite set of local minima. Thus the
situation is quite different from that of the uniform case [see [2 J, for
example] or the case of L 2 [3, 4].

GENERAL SEITING

A map A: SeEN -+ C[a, b1(S open) is given with properties:

(a) A(x) is continuously differentiable on la, b J for each xES and the
function x-+dA(x)(·)/dt is continuous from S to C[a,b] using the uniform
norm on C[a, b ].

(b) o2A(x)/ox/oXj exists and is continuous on S using the uniform
norm on C[a, b1for each 1 <. i, j <. N.

(c) For each xES, {oA(x)/ox!"", oA(x)/oxN } spans a Haar subspace
of C[a, b1of dimension d(x) <. N.

(d) A (x) - A(y) has at most N - 1 roots in [a, b1if A(x) *' A(y).
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Two important examples of nonlinear families satisfying (a}-(d) are the
(ordinary) rational and exponential families (see [7 D. See also the examples
later in this paper.

The approximation problem is then:

Problem. Given f E C[a, bI find x * E S such that

b

F(x) == f IA(x)(t) - f(t)1 dt is minimized when x = x*. (1)
a

The following result is well known and we shall not provide a proof.

LEMMA 1. For each xES and h E EN let A ' (x, h) denote the directional
derivative 'L7=1 hjBA(x)/Bxj where h = (hi"'" hN). Then a necessary
condition that xES be a local minimum of F(x) given by (1) above is that

I( sgn(A (x)(t) - f(t» A'(x, h)(t) dt I~LlA' (x, h)(t)1 dt (2)

for every hE EN where Z == {t IA (x)(t) - f(t) = O} and sgn(r) = rllrl ifr *" 0
and 0 otherwise.

In particular, if /.l(Z) = 0 where /.l denotes Lebesgue measure, then the
Frechet derivative F' (x, . ) exists and

F'(x,h)=rsgn(A(x)(t)-f(t»A'(x,h)(t)dt=O (3)
a

for all h E EN if xES is a local minimum of F.
The following result may be found in [51.

LEMMA 2. Let xES and fE C[a, b1be such that f is differentiable on
some open set containing the zeros of A (x) - f and that there are exactly M
such zeros all simple. Then the second Frechet derivative F"(x, " .) exists
and in particular

F"( h k)= 2 ~ A'(x,h)(tj)A'(x,k)(tj)
x, , /=1 IdE(x)(tj)ldtl

b

+f sgn(E(x)(t»· A "(x, h, k)(t) dt (4)
a

for all h,kEEN where {t!",.,tM } are the roots of A(x)-f and E(x)==
A(x)-j
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Remark 1. In [5] the factor 2 appearing in (4) above inexplicably disap­
peared in the middle of a calculation and was left out of the statement of the
crucial results. Also we now have that if xES satisfies (3) and

F"(x, h, h) > 0

then x is a local minimum of F.

for all h E EN, h '* 0 (5)

CANONICAL POINTS

Let H be a Haar subspace of C[a, b] of dimension N, say H =
span{h) ,... , hN}. Then it is known [6] that there exist unique points {t. '00" tN}
with a = to < t 1 <... < tN < tN + 1 = b such that

These are called the canonical points for H.

i= 1,00.,N. (6)

LEMMA 3. Let H be as above and suppose fE C[a, b] and hE Hare
such that f - h changes sign exactly at the canonical points of H. Then
f~ sgn(f(t) - h(t)) h;(t) dt = 0, i = 1'00" N, and hence h is the unique closest
point to f from H.

Proof Since f - h changes sign exactly at the canonical points of H we
have that

f
b N flJ+1

sgn(f(t) - h(t» h;(t) dt = (-IY ~ (-I)j h;(t) dt = 0,
a J=O IJ

i = I,... , N, where e = 0 or e = 1. I
In order to construct the examples of this paper we need to first investigate

the behavior of the canonical points for the local approximating tangent
spaces of the nonlinear family as x varies. The following definition is crucial
for this.

DEFINITION. For each xES let T(x) = span{8A(x)j8x p ... , 8A(x)j8xN }

and d(x) = dim(T(x». Then the point x is called normal if d(x) = N.

Th,e importance of the idea of normality lies partly in the fact that for the
standard nonlinear families such as the rationals and exponentials any
minimum point x satisfying (3) must be normal iff'* A (x) [see Theorem 8
of [7] noting that it holds for p = I if (3) holds].

To study the behavior of the canonical points we define a function

640/37/2-4
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<1>(x, t) = (<1> 1(X, t),..., <1>N(X, i» on S X 'l/ --+ RN where 'l/ = {(t p"" tN) I a =
to < t l < ... < tN< tN+ 1 = b} and where

N r.+ IOA
<1>i(X, t) = 2: (-ly ) a (x)(t) dt,

j=O Ij Xi

Then assuming X is normal

i= 1,...,N. (7)

<1> i(X, t(x» = 0, i= 1,...,N (8)

where t(x) = (tl(x),..., tN(x» and {t.(x), ..., tN(x)} are the canonical points for
T(x). A simple calculation shows that

0<1>. oA
~ (x, t) = (-1)k- 12 - (x)(tk ),
utk oXi

i= 1,...,N;k= 1,...,N. (9)

i= 1,...,N;k= 1,...,N.

(10)

Let o<1>/at and o<1>/ox denote the Jacobian matrices (o<1>/Otk).';;'i.k';;'N and
(0<1>/oxk)1<..i.k<..N' respectively. Then using elementary properties of deter­
minants we have

if x is normal since T(x) is then a Haar space of dimension N and so
(oA (X)(tk)/OXi) I <..i.k<..N is nonsingular by the unique interpolation property of
a Haar space. Thus, we have the following result.

LEMMA 4. Let xES be normal and let <1> be as above. Then the
canonical point map x --+ t(x) is differentiable on some open neighborhood of
x and in fact

at [0<1> ]-.0<1>
ox (x) = - at (x, t(x» ox (x, t(x». (12)

Proof Equations (7)-(11) imply that the implicit function theorem
applies and by the uniqueness of canonical points the resulting map must in
fact be the canonical point map x --+ t(x). The implicit function theorem then
yields (12). I

Equation (12) shows that the canonical points change smoothly as x
varies over a sufficiently small neighborhood of any normal point. We will
now specialize to the case where the approximating family contains one
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linear and one nonlinear parameter although the construction would
generalize easily to a larger number of linear parameters.

Assume now that A (x)(t) is of the form

A(x)(t) = x, y(x2)(t) (13)

where for each x = (x" x 2 ) E S = E X U (U open in E) y(x2) is either a
nonzero constant function or a strictly monotone and nonzero function on
[a, b ]. In addition to properties (a)-(d) we shall assume

(e) If Xv --+ xv' {xv} c S, XV E S, then the first derivative of A(xv) (with
respect to t) converges uniformly to the first derivative of A (xv) as v --+ 00.

(f) For each x 2 , {y(x2), oy(X2)/OX2, 02y(X 2)/ox;} spans a Haar space
of dimension 3.

EXAMPLES. Let y(x2)(t) = eX21 (where U = E) on an arbitrary interval
[a,b] or let y(x2)(t) = 1/(1 +x2t), tE [-1, 1], where U=(-I, 1). Then
assumptions (a}-(f) are easily seen to be satisfied.

The following formulas are clear

(14)

For each normal x = (x" x2) the corresponding canonical points t,(x) and
t2(x) depend only on x2. That is, if x' = (x;, x2) and x = (x" x2) with x, and
x; both nonzero, then x and x' have the same canonical points since
span{y(x2), x; oy(X2)/OX2} = span{y(x2), x, oy(X2)/OX2}. Thus we shall denote
the canonical points by t,(X2) and t2(X2) where a < t,(x2) < t2(X2) <b.
Applying formulas (9), (10), and (14) we obtain

olP (00ox (x, t(x» = o )
b 02 '

x, { sgn(e(t» OX~ (x2)(t) dt

(15)
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where I>(t) = 1 on [a, t l(X 2)), -Ion (t l(X2), tz(x2)), and 1 on [t2(X2), b]. Then
applying (12) we arrive at

(16)

(17)

where

b 02y
a = f sgn(l>(t)) -2 (x2)(t) dt

a OX 2

and

Since {y(x2), oy(X2)/OX2, 02Y(X2)/YX~} spans a Haar subspace H of qa, b]
of dimension 3 and since I>(t) has exactly two sign changes in [a, b] and is
nonzero almost everywhere, a is not zero. (That is there is an element h E H
such that sgn h = sgn I> almost everywhere). Thus ot I (X2)/OX2 and Ot2(X 2)/OX2
are both nonzero and have the same sign. Weare now ready for the main
result of this paper.

THEOREM. There exists an f E q a, b] whose error functional F(x) =
f~ IA(x)(t) - f(t)1 dt has a continuum of critical points for the nonlinear
family {A (x) IxES} given by (13).

Proof Let x 2E U be such that y(x2) is strictly monotone on [a, bland
let t l(X2) and tz(x2) be the corresponding canonical points and define t* by
t* = (t.(x2) + t2(x2))/2. Without loss of generality assume that ot l (X2)/OX2
and Ot2(X2)/OX2 are positive. Then by continuity there is an interval
[x2 , x2 +(j] == I so that the images t. (I) and til) are of form

tl(I) = [t l (X2), t l(X2) + 1>.1 == II'

tz(I) = [t2(X2), t2(X2) + 1>2] == 12,

where t* fl II U 12, y(x2) is strictly monotone on [a, b] and Ot l/OX2 and
8t2/oX2 are both positive for each x 2E I. More precisely, the continuity of
the maps x 2-+ t.(x2) and X2-+ t2(X2) on I -+ (a, b), the continuity of the maps



NONLINEAR L I APPROXIMATION 153

X2--,> Y(X2), X2--,> Otl(X2)/OX2, and X2--,> Ot2(X2)/OX2 from U --,> C(a, b1(uniform
norm), and property (e) are being invoked to obtain the above conclusion.

From the above we conclude that there are inverse maps x~: t --,> x~(t) and
x~(t): t--,>x~(t) defined on II and 12 with range I for the maps t l and t2. Now
for each x 2E I, define XI by XI = 1/y(x2)(t*) and let A (x)(t) = XI y(x2)(t)
where X = (XI' x 2). Then A (x)(t*) = 1 for each x 2E I and by assumption (d),
if X2*X~, then A(x)-A(x') has t* as its only zero when x=(xI'x2) and
x' = (x;,xD. Since A(x) only depends on x 2 we shall let r(x2) denote A(x)
for X = (1/y(x2)(t*), x 2).

Then by strict monotonicity of r(x2) on [a, b] for each x 2E I and the fact
that r(x2)(t*) = 1 for all x 2E I we have that one of the following two
situations must occur.

(i) a ~ t < t* and x 2~ X2< x 2~ x 2+ ~ => r(x2)(t) > r(x2)(t),
t* ~ t ~ band x 2~ X2< x 2~ x 2+ ~ => r(x2)(t) < r(x2)(t);

(ii) a ~ t < t* and x 2~ X2<x 2~ x 2+ ~ => r(x2)(t) < r(x2)(t),
t* < t ~ band x 2~ X2<x 2~ x 2+ ~ => r(x2)(t) > r(x2)(t).

Without loss of generality assume (i) holds, the construction being
completely analogous for case (ii). We are now ready to define a continuous
functionfthat has each r(x2) as a critical point, x 2E I. To do this consider
the following five intervals. J I = [a, t l(X2»; J2= [t l(X2), t l(X2) + ell; J3=
(t I (x2) + el' t2(X2»); J4= [t2(X2), t2(X2) + e2 l; J5= (t 2(X2) + e2, b]. Now
define f to be continuous on [a, b] with the following properties. On J 2 let
f(t) = r(x~(t»(t) and on J4 letf(t) = r(x~(t»(t) while on the remaining three
intervals the inequalities f(t) > r(x2)(t) t E J I ; f(t) < min{r(x2 + ~)(t),

r(x2)(t)} t E J3; and f(t) > r(x2+ ~)(t), t E J5 should hold.
The functions r(x~(t))(·) and r(x~(t))(.) are continuous on J2 and J4,

respectively, being the composition of continuous functions. That a
continuous f exists with the required properties on J I U J 3 U J 5 is then clear
by considering (i).

Claim. For each x 2E I, f - r(x2) changes sign exactly at t I(X2) and
t2(X2)·

Proof We first check that f - r(x2) changes sign at t l(X 2) and tiX2)'
First f(t l(X2» - r(x2)(tl(X2)) = r(x~(tI(X2» - r(x2)(tl(X2») = r(x2)(tl(X2»)­
r(x2)(tl(X2» = 0 since by definition x~ and t l are' inverse functions of each
other. Similarly f - r(x2) vanishes at t2(X2). Assume that t I (x2) > t I (x2).
Then if t l(X2) < t < t l(X2), f(t) = r(x~(t»(t) > r(x2)(t) = r(x~(tI(X2))(t) since
x~(t) < X2=X~(tl(X2)) if t < t l(X2). The same reasoning shows that f(t) <
r(x2)(t) if t > t l(X2). Thusf- r(x2) changes sign at x 2 (the case t l(X2) = t l(X2)
is similar) and only at t l (X2) on J2 • A completely analogous argument shows
that f - r(x2) changes sign on J4 exactly at t2(X2).
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Finally it remains to show that these are the only sign changes that occur
for f - r(x2) on la, b]. But by definition, f - r(x 2) is positive on J I , negative
on J 3 , and positive on J 5 and hence can have no other sign changes. Since
f - r(x 2) changes sign exactly at the canonical points for x 2 , x = (x I' x 2) is a
critical point of F(x). Since x 2 was arbitrary in I, F(x) has a continuum of
critical points. I

Remark 2. In the construction above, the function f is continuously
differentiable on J 2 U J4 and can be constructed to be in C I Ia, b]. Also, if in
the construction we use a sequence of points tv = (llv' l2V) where liv 1ti ==
tlx2) with liv+ I < liv' V = 1,2,..., i = 1,2 and where tv represents the
canonical points for, say, x 2v ' then referring to Remark 1 we can define f so
thatfE C I [a, bI andfhas each Xv = (XIV' x2V ) as an isolated local minimum.
It is an open question whether or not the xv's could be made to be global
minima.
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